2023
DOI: 10.1093/bib/bbad507
|View full text |Cite
|
Sign up to set email alerts
|

scFed: federated learning for cell type classification with scRNA-seq

Shuang Wang,
Bochen Shen,
Lanting Guo
et al.

Abstract: The advent of single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and complexity in biological tissues. However, the nature of large, sparse scRNA-seq datasets and privacy regulations present challenges for efficient cell identification. Federated learning provides a solution, allowing efficient and private data use. Here, we introduce scFed, a unified federated learning framework that allows for benchmarking of four classification algorithms without violating … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 25 publications
0
0
0
Order By: Relevance