This study aims at forming research teams for interinstitutional collaborations. Research institutes have their own purposes and topics of interest. Thus, supporting joint research between multiple institutes, we have to consider not only synergies between scholars but also purposes of the institutes. To solve this problem, we propose a bibliographic network embedding method that can learn characteristics of institutes, not only of each scholar. First, we compose a bibliographic network that consists of scholars, publications, venues, research projects, and institutes. Collaboration styles and research topics of institutes and scholars are extracted by mining subgraphs from the bibliographic network. Then, vector representations of network nodes are learned based on occurrences of subgraphs on the nodes and neighborhoods of the nodes. Based on the vector representations, we train multilayer perceptrons (MLP) to assess collaboration probability between scholars affiliated in different institutes. For training the MLP, we suggest three strategies: (i) considering every collaboration, (ii) focusing on interinstitutional collaborations, and (iii) focusing on collaboration outcomes. To evaluate the proposed methods, we have analyzed research collaborations of POSTECH (Pohang University of Science and Technology) and RIST (Research Institute of Industrial Science and Technology) from 2011 to 2020. Then, we conducted the research team formation for joint research of the two institutes according to two purposes: pure research and commercialization research.