Purpose
Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The study aims to extend the use of FDM printers for 3D printing of low melting point alloy (LMPA), which has applications in the electronics industry, rapid tooling, biomedical, etc.
Design/methodology/approach
Solder is the LMPA with alloy’s melting temperature (around 200°C) lower than the parent metals. The most common composition of the solder, which is widely used, is tin and lead. However, lead is a hazardous material having environmental and health deteriorating effects. Therefore, lead-free Sn89Bi10Cu non-eutectic alloy in the form of filament was used. The step-by-step method has been used to identify the process window for temperature, print speed, filament length (E) and layer height. The existing FDM printer was customized for the present work.
Findings
Analysis of infrared images has been done to understand discontinuity at a certain range of process parameters. The effect of printing parameters on inter-bonding, width and thickness of the layers has also been studied. The microstructure of the parent material and deposited bead has been observed. Conclusions were drawn out based on the results, and the scope for the future has been pointed out.
Originality/value
The experiments resulted in the process window identification of print speed, extrusion temperature, filament length and layer height of Sn89Bi10Cu which is not done previously.