BackgroundExercise is inversely related with cardiovascular disease (CVD), but large-scale studies of incident CVD events are lacking. Moreover, little is known about genetic determinants of fitness and physical activity, and modifiable effects of exercise in individuals with elevated genetic risk of CVD. Finally, causal analyses of exercise traits are limited.MethodsWe estimated associations of grip strength, physical activity, and cardiorespiratory fitness with CVD and all-cause death in up to 502,635 individuals from the UK Biobank. We also examined these associations in individuals with different genetic burden on coronary heart disease (CHD) and atrial fibrillation (AF). Finally, we performed genome-wide association study (GWAS) of grip strength and physical activity, as well as Mendelian randomization analysis to assess the causal role of grip strength in CHD.FindingsGrip strength, physical activity, and cardiorespiratory fitness showed strong inverse associations with incident cardiovascular events and all-cause death (for composite CVD; HR, 0.78, 95% CI, 0.77-0.80; HR, 0.94, 95% CI, 0.93-0.95, and HR, 0.67, 95% CI, 0.63-0.71, per SD change, respectively). We observed stronger associations of grip strength with CHD and AF for individuals in the lowest tertile of genetic risk (Pinteraction = 0.006, Pinteraction = 0.03, respectively), but the inverse associations were present in each category of genetic risk. We report 27 novel genetic loci associated with grip strength and 2 loci with physical activity, with the strongest associations in FTO (rs56094641, P=3.8×10-24) and SMIM2 (rs9316077, P=1.4×10-8), respectively. By use of Mendelian randomization, we provide evidence that grip strength is causally related to CHD.InterpretationMaintaining physical strength is likely to prevent future cardiovascular events, also in individuals with elevated genetic risk for CVD.FundingNational Institutes of Health (1 R01 HL135313-01), Knut and Alice Wallenberg Foundation (2013.0126), and the Finnish Cultural Foundation.