There are two Fe-uptake strategies for maintaining Fe homeostasis in plants. As a special graminaceous plant, rice applies both strategies. However, it remains unclear how these two strategies are regulated in rice. IRON-RELATED BHLH TRANSCRIPTION FACTOR 2 (OsIRO2) is critical for regulating Fe uptake in rice. In this study, we identified an interacting partner of OsIRO2, Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT), which encodes a bHLH transcription factor. The OsIRO2 protein is localized in the cytoplasm and nucleus, but OsFIT facilitates the accumulation of OsIRO2 in the nucleus. Loss-of-function mutations to OsFIT result in decreased Fe accumulation, severe Fe-deficiency symptoms, and disrupted expression of Fe-uptake genes. In contrast, OsFIT overexpression promotes Fe accumulation and the expression of Fe-uptake genes. Genetic analyses indicated that OsFIT and OsIRO2 function in the same genetic node. Further analysis suggested that OsFIT and OsIRO2 form a functional transcription activation complex to initiate the expression of Fe-uptake genes. Our findings provide a mechanism understanding of how rice maintains Fe homeostasis.One-sentence summaryOsFIT interacts with and facilitates the accumulation of OsIRO2 in the nucleus where the OsFIT-OsIRO2 transcription complex initiates the transcription of Fe deficiency responsive genes.