The paper reports on the performance of 34 different concrete mixes containing glass crushed to ¾-in. (19-mm) maximum size as coarse aggregate and six reference mixes made with gravel of the same size. Two cements of alkali equivalent 0.58 and 1.13, classifiable as low and high alkali (ASTM C 150-72), in amounts ranging from 400–900 lb/yd3 (237–534 kg/m3 were used in combination with glass both with the fines removed and in the as-crushed condition. Partial cement replacement with fly ash and mixing of glass with gravel aggregate were included in an attempt to find a suitable method of overcoming the expected adverse effects of the reaction between glass and cement alkalis.
On the basis of compressive strength, flexural strength, expansion, and visible surface deterioration recorded up to an age of one year, the results show that in many cases the direct combination of glass with portland cement yields concrete which exhibits marked strength regression and excessive expansion due to alkali-aggregate reaction. The conditions under which performance is satisfactory appear to relate to limiting maximum values of cement content and alkali equivalent. Replacement of 25 to 30 percent by weight of the cement, whether low or high alkali, appears to be an effective and widely applicable method of ensuring good long-term concrete performance, although the minimum required in any given case may be related to cement composition.