The paper reports on the performance of 34 different concrete mixes containing glass crushed to ¾-in. (19-mm) maximum size as coarse aggregate and six reference mixes made with gravel of the same size. Two cements of alkali equivalent 0.58 and 1.13, classifiable as low and high alkali (ASTM C 150-72), in amounts ranging from 400–900 lb/yd3 (237–534 kg/m3 were used in combination with glass both with the fines removed and in the as-crushed condition. Partial cement replacement with fly ash and mixing of glass with gravel aggregate were included in an attempt to find a suitable method of overcoming the expected adverse effects of the reaction between glass and cement alkalis. On the basis of compressive strength, flexural strength, expansion, and visible surface deterioration recorded up to an age of one year, the results show that in many cases the direct combination of glass with portland cement yields concrete which exhibits marked strength regression and excessive expansion due to alkali-aggregate reaction. The conditions under which performance is satisfactory appear to relate to limiting maximum values of cement content and alkali equivalent. Replacement of 25 to 30 percent by weight of the cement, whether low or high alkali, appears to be an effective and widely applicable method of ensuring good long-term concrete performance, although the minimum required in any given case may be related to cement composition.
Compressive and tensile strength of dry Douglas-fir was measured through rapid constant deformation rate tests at temperatures from 25 to 288°C, at initial thermoequilibrium and after 2 h of heating. The tensile strength decreased slowly with increasing temperatures to 175°C. Above 175°C, the tensile strength reduces rapidly. This is attributed to alteration of the cellulosic fraction of wood. The compressive strength decreases more uniformly with temperatures increasing to 288°C due to changes occurring in all three basic wood components with change in temperature. A first-order reaction equation for bond rupture/formation was adopted to describe the response. Including only terms for bond rupture resulted in good correlation to the observed strength response at reaching thermoequilibrium.
Sulfate attack on concrete can either be of expansion-cracking type due to ettringite formation or of surface deterioration type due to acidic nature of sulfate solutions. The present test methods for determining sulfate resistance generally evaluate the expansive attack phenomenon. Since low C3A portland cements are not susceptible to this type of attack, new methods need to be developed to test the long-time resistance of these cements to the acidic type of sulfate attack. An attempt to develop a laboratory method involving immersion of small specimens of cement paste in a sulfate solution held at constant pH is described. Preliminary results are given for five different types of cements tested in accordance with the new method.
An analysis is presented concerning problems of correct application of approximation formulas such as Neuber's rule for the case of inelastic net section behavior of notched members. The rules developed allow a generalized consideration of elastic-plastic net section behavior for any type of loading and notch geometry. The analysis is illustrated by discussion of experimental and calculated load-notch strain curves of different specimens.
This paper surveys the current state of knowledge concerning multiaxial fatigue. Developments are presented in chronological order and are discussed so as to supplement existing reviews in this field. Emphasis is placed primarily on the criteria or methods of evaluation of fatigue strength under general multiaxial loading at room temperature. The survey indicates that the early development of the criteria was based on extensions of static yield theories to fatigue under combined stresses. These are stress-based criteria limited primarily to high-cycle fatigue. Most of the later criteria are strain-based. These criteria fall into two broad groups: the equivalent stress or strain type and the critical plane type. Most of these criteria commonly lack considerations of the cyclic stress-strain response. Their application to nonproportional loading suffers from difficulties in implementation or from inconsistencies with results of experiments. Recent approaches fall in the category of continuous damage evaluation methods. At present, these appear to be abstract or difficult to implement. All the above criteria are critically examined and compared. With this background, a new plastic work approach, proposed by the author, is discussed briefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.