This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface‐enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle‐derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.