Objectives: To describe our screening population and audit of the performance of first-trimester screening for Down syndrome, based on a combined test, enhanced with additional ultrasound markers, over the whole period of the study.
Material and methods:We performed a prospective study from 2009 to 2016, which included 1358 singleton fetuses with a crown-rump length of 45-84 mm. The risk of aneuploidy was calculated using nuchal translucency, fetal heart rate (FHR), and additional markers, such as nasal bone (NB), tricuspid flow (TF) and ductus venosus (DV), combined with maternal serum free β-human chorionic gonadotropin (fβ-hCG) and pregnancy-associated plasma protein-A (PAPP-A).Results: 87% of patients were evaluated using all the additional ultrasound markers and 97% of patients were assessed using at least two markers, in any combination. 70.5% of patients were also evaluated using maternal serum biochemistry. The most common risk calculation used nuchal translucency, FHR, all additional ultrasound markers, fβ-hCG and PAPP-A in 851 (62.7%) of cases. The adjusted risk of trisomy 21 was greater than 1:100 in 65 (4.8%) women. Of these patients, 58 (87.7%) chose to have an invasive test. There were 24 aneuploid fetuses (1.7%); and from these we identified 12 (50%) trisomy 21, 6 (25%) sex chromosome anomalies, with the remainder being triploidy and trisomy 18/13. The combined test detected 11 of the 12 cases as having trisomy 21, with a first trimester detection rate of 91.7%. 39 fetuses (2.8%) had various types of structural anomalies.
Conclusion:The combined test enhanced with all additional ultrasound markers did not show any substantial improvement in T21 detection rate, when compared with using only one of the additional markers.