This study was performed to investigate the possible sources as well as seasonal and diurnal variations of indoor air pollutants in widely used four different environments (house, office, kindergarten, and primary school) in which people spend most of their time. Bioaerosol levels and species, volatile organic compound (VOC) levels, and PM 2.5 (particulate matter with an aerodynamic diameter 2.5 mm) levels were determined in different parts of these environments in parallel with outdoor sampling. Air pollution samplings were carried out in each microenvironment during five subsequent days in both winter and summer in Ankara, Turkey. The results indicated that bioaerosol, VOC, and PM 2.5 levels were higher in the winter than in the summer. Moreover, PM 2.5 and bioaerosol levels showed remarkable daily and diurnal variations, whereas a good correlation was found between the VOC levels measured in the morning and in the afternoon. Bacteria levels were, in general, higher than fungi levels. Among the VOCs, toluene was the most predominant, whereas elevated n-hexane levels were also observed in the kindergarten and the primary school, probably due to the frequent wet cleaning during school days. According to factor analysis, several factors were found to be significantly influencing the indoor air quality (IAQ), and amongst them, VOC-based products used indoors ranked first. The overall results indicate that grab sampling in naturally ventilated places may overestimate or underestimate the IAQ due to the inhomogeneous composition of indoor air caused by irregular exchanges with the outdoor air according to the season and/or occupants' habits.Implications: Seasonal and diurnal variations of VOCs, PM 2.5 , bioaerosols in house, office, and schools were observed, in which PM 2.5 and bioaeorosols showed marked both intra-and interday variability, but VOCs did not. VOC-containing products were the most common source of air pollutants affecting the indoor air quality. External factors affecting the indoor air quality were season and indirectly ventilation. A grab sample cannot be representative in evaluating the air quality of a naturally ventilated environment precisely.