ABSTRACT:The mammalian testis typically operates on the brink of hypoxia; the long-standing dogma is that increased testicular temperature increases metabolism, but blood flow is unaffected and the resulting hypoxia reduces sperm motility and morphology. In rats and mice, oxygen (O 2 ) content of inspired air affected O 2 content of testes, enabling the latter to range from approximately 50 to more than 200% of physiologic concentrations. A ram model was used to test the hypotheses that hypoxia would disrupt sperm motility and morphology and that hyperoxia would prevent hyperthermia-induced reductions in sperm motility and morphology. Eighteen Canadian Arcott rams (approximately 10 months old) were used in a 2 × 3 factorial, with factors being scrotal insulation (insulated or not insulated) and O 2 concentrations in inspired air (14, 21 or 85%). Six rams, three with and three without scrotal insulation, were placed in each of three enclosed areas for 30 h to expose them to their respective oxygen concentrations, with scrotal insulation removed at the end of the exposure. Semen was collected by electro-ejaculation twice before insulation, bi-weekly for four weeks starting one week after exposures, and then once weekly for two weeks. There were effects of insulation, time and an insulation × time interaction for motile sperm and sperm that had normal morphology or head or midpiece defects (P < 0.01 for each). Sperm motility and morphology exhibited alterations between approximately two and five weeks after insulation, with mean progressively motile and morphologically normal sperm decreasing from approximately 55 to 35% and from 80 to 30%, respectively, and with head and midpiece defects increasing from approximately 3 to 50% and from 10 to 20% (P < 0.05 for each). The hypotheses that hypoxia would disrupt sperm quality and production, whereas hyperoxia would prevent hyperthermia-induced reductions in sperm quality and production, were not supported. This is apparently the first report that heat-stress induced damage to sperm was due to increased temperature per se and not testicular hypoxia, calling into question a long-standing paradigm.