We developed a mass-memory chip by staking 1 Gbit double data rate 2 (DDR2) synchronous dynamic random access memory (SDRAM) memory core up to 4 Gbit storage for future satellite missions which require large storage for data collected during the mission execution. To investigate the resistance of the chip to the space radiation environment, we have performed heavy-ion-driven single event experiments using Heavy Ion Medical Accelerator in Chiba medium energy beam line. The radiation characteristics are presented for the DDR2 SDRAM (K4T1G164QE) fabricated in 56 nm technology. The statistical analyses and comparisons of the characteristics of chips fabricated with previous technologies are presented. The crosssection values for various single event categories were derived up to ~80 MeVcm 2 /mg. Our comparison of the DDR2 SDRAM, which was fabricated in 56 nm technology node, with previous technologies, implies that the increased degree of integration causes the memory chip to become vulnerable to single-event functional interrupt, but resistant to single-event latch-up.