The agricultural sector is considered one of the major sources of greenhouse gas (GHG) emissions globally. The livestock industry as a significant contributor, is accounting for about 18% of GHG emissions measured in carbon dioxide (CO2) equivalent from agricultural practices. Depending on farming practices and climatic conditions, GHGs such as methane (CH4) and nitrous oxide (N2O) emissions from livestock agriculture can vary significantly. Country-specific emission factors are, therefore, needed for a precise estimation of GHG emissions and to avoid uncertainties. This study was aimed at estimating the CH4 and N2O emission fluxes from Hanwoo (the most famous and popular Korean native cattle) manure management systems. CH4 and N2O emission fluxes from litter in the Hanwoo cattle barn and composting lot were monitored and calculated for 52 weeks using the dynamic chamber method. The calculated monthly average fluxes of CH4 and N2O from litter in the cattle barn ranged from 0.0 to 30.0 ± 13.7 and 0.896 ± 0.557 to 2.925 ± 2.853 μg/m2 s, respectively during the whole measurement period. While during the composting period, the monthly average of CH4 and N2O emission fluxes were varied from 1.449 ± 0.783 to 86.930 ± 19.092 and 0.511 ± 0.410 to 2.629 ± 1.105 μg/m2 s, respectively. The calculated emission fluxes of CH4 and N2O from manure management systems in this study were almost 5.4 and 2.1 times, respectively higher than the values reported for the Asian, South and North American countries in the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Overall, this study initiates the process along with signifies the importance of developing country-specific GHG inventories for the effective reduction of GHG emissions from the livestock sector in Korea.