A striking feature of the nervous system is that it shows extensive plasticity of structure and function that allows animals to adjust to changes in their environment. Neural activity plays a key role in mediating experience-dependent neural plasticity and, thus, creates a link between the external environment, the nervous system, and behavior. One dramatic example of neural plasticity is ongoing neurogenesis in the adult brain. The role of neural activity in modulating neuronal addition, however, has not been well studied at the level of neural circuits. The avian song control system allows us to investigate how activity influences neuronal addition to a neural circuit that regulates song, a learned sensorimotor social behavior. In adult white-crowned sparrows, new neurons are added continually to the song nucleus HVC (proper name) and project their axons to its target nucleus, the robust nucleus of the arcopallium (RA). We report here that electrical activity in RA regulates neuronal addition to HVC. Decreasing neural activity in RA by intracerebral infusion of the GABA A receptor agonist muscimol decreased the number of new HVC neurons by 56%. Our results suggest that postsynaptic electrical activity influences the addition of new neurons into a functional neural circuit in adult birds. Songbirds provide a tractable model for understanding the mechanisms that regulate new neuron addition into functional circuits. Song is a learned sensorimotor behavior that is important for songbird reproduction. Song learning and production are regulated by a discrete, well-characterized neural circuit that includes HVC (proper name) and its target nucleus, the robust nucleus of the arcopallium (RA), both located in the avian forebrain (Fig. 1A) (2). In the adult Gambel's white-crowned sparrow (WCS), the song control system shows extreme seasonal neuroplasticity (reviewed in ref.3). Early in the breeding season, HVC and RA of WCS nearly double in volume. The increase in HVC volume results largely from an increase in new neuron incorporation, whereas the increase in RA volume results from increases in neuron size and spacing, but not number. RA neurons also show increased spontaneous electrical activity in the breeding season (4, 5). WCS typically produce only one song type that is longer and more stereotyped in structure during the breeding season (6, 7).HVC contains three types of neurons: HVCâRA and HVCâarea X projection neurons and interneurons. During seasonal growth, most, if not all, neurons incorporated into HVC project to RA (ref. 8, but see ref. 9). Neural progenitor cells are born at the dorsal and ventral portion of the lateral ventricle and migrate from the ventricular zone (VZ) to HVC within 1 wk after birth (10). Over the next 2-3 wk, new neurons send axonal projections to RA (11). These new HVCâRA projection neurons are functional; they can fire action potentials in response to sound stimuli (12).Environment and experience play important roles in both brain development and adult neurogenesis. For example, duri...