The success of invasive species appears to be a paradox: despite experiencing strong population bottlenecks, invasive species are able to successfully establish in new environments. We studied how the walnut husk fly, Rhagoletis completa, was able to successfully colonize California from the Midwestern United States, by examining genetic diversity and diapause variation of native and introduced fly populations. Climate plays an important role in the successful establishment of introduced insects, because insect diapause is highly dependent upon external climatic conditions. We examined if: (1) fly populations show signs of a population bottleneck, (2) native and introduced flies differ in diapause length when exposed to California and Midwestern climatic conditions, and (3) population genetic diversity is related to variation in diapause length. We assessed if fly diapause conformed more to a model of establishment by local adaptation or to a model of a highly plastic "general-purpose genotype". Our results indicate that only two populations close to the original introduced location showed signs of a population bottleneck, and native and introduced populations did not differ in genetic diversity. Genetic diversity increased in the northern introduced populations, suggesting that multiple introductions have occurred. Flies emerged about 2 weeks earlier under the Midwestern treatment than the California treatment, and introduced flies emerged about a week earlier than native flies. All flies emerged when walnuts are typically available in California. Although variance in diapause length differed between populations, it did not vary between populations or regions. Furthermore, genetic diversity was not associated with diapause variation. Therefore, multiple introductions and a "general-purpose genotype" appear to have facilitated the fly's invasion into California.