Identifying hotspots as a potential for wildfires due to weather/climate factors needs to be studied in more detail to consider the policies taken by relevant agencies in the Nagan Raya Regency, mainly consisting of peatlands. Rainfall observation data in some areas are incomplete, so alternative data are needed for rainfall estimation for those areas, such as satellite data. However, the satellite data does not necessarily match the conditions in the field, so validation is needed. In this study, satellite data were validated with available observational data in the area, so the results can be used as a reference when field data is unavailable. The data used are GSMaP_GNRT6 and observation data from 5 rainfall observation posts: Beutong, Cut Nyak Dien Meteorological Station, Darul Makmur, PT. Socfindo and Pulo Ie for the period 2010-2019. The satellite and the observation data were correlated with the Pearson method to see the relationship between the two data. The difference between each satellite data and observations at the same time and place is calculated using the formulas Mean Error (ME), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Furthermore, a case study of fire incidents and satellite hotspot data at several locations was also observed simultaneously. In addition, the validated rainfall data were also used to calculate the Standardized Precipitation Index (SPI) value. The result shows the validation of rainfall data with GSMaP_GNRT6 satellite data has a moderate correlation with the MAE value ranging from 101.3 to 195.12 from the five rainfall observation posts. The results also show that a 10-day base of rainfall before the occurrence of the wildfires was in a low category (86%). The number of hotspot occurrences was also supported by the negative monthly SPI value, high air temperature, and the type of land in the study area. Keywords: Hotspot, Rainfall, Air Temperature, Wildfires, Peat Lands