High-permittivity III-V semiconductor nanocavities have shown huge potential for enhanced nonlinear light-matter interactions at the nanoscale. In particular, Second Harmonic (SH) generation in AlGaAs nanoantennas can be extremely efficient; however, vertical emission is difficult to achieve, due to the zincblende χ (2) tensor and epitaxially growth on (100) substrates. Here, we demonstrate that we can shape the second harmonic radiation pattern from a single AlGaAs nanostructure by exploiting a geometrical symmetry breaking optimization approach. The optimized design allows to redirect the SH signal toward the normal direction and to increase the SH power collection efficiency by 2 orders of magnitude in a small numerical aperture of 0.1 with respect to the symmetrical counterpart structure.