2014
DOI: 10.1515/sagmb-2012-0021
|View full text |Cite
|
Sign up to set email alerts
|

Second order optimization for the inference of gene regulatory pathways

Abstract: With the increasing availability of experimental data on gene interactions, modeling of gene regulatory pathways has gained special attention. Gradient descent algorithms have been widely used for regression and classification applications. Unfortunately, results obtained after training a model by gradient descent are often highly variable. In this paper, we present a new second order learning rule based on the Newton's method for inferring optimal gene regulatory pathways. Unlike the gradient descent method, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?