Background: In the present article, we propose a method for determining optimal metabolic pathways in terms of the level of concentration of the enzymes catalyzing various reactions in the entire metabolic network. The method, first of all, generates data on reaction fluxes in a pathway based on steady state condition. A set of constraints is formulated incorporating weighting coefficients corresponding to concentration of enzymes catalyzing reactions in the pathway. Finally, the rate of yield of the target metabolite, starting with a given substrate, is maximized in order to identify an optimal pathway through these weighting coefficients.
BackgroundGene Regulatory Networks (GRNs) have become a major focus of interest in recent years. Elucidating the architecture and dynamics of large scale gene regulatory networks is an important goal in systems biology. The knowledge of the gene regulatory networks further gives insights about gene regulatory pathways. This information leads to many potential applications in medicine and molecular biology, examples of which are identification of metabolic pathways, complex genetic diseases, drug discovery and toxicology analysis. High-throughput technologies allow studying various aspects of gene regulatory networks on a genome-wide scale and we will discuss recent advances as well as limitations and future challenges for gene network modeling. Novel approaches are needed to both infer the causal genes and generate hypothesis on the underlying regulatory mechanisms.MethodologyIn the present article, we introduce a new method for identifying a set of optimal gene regulatory pathways by using structural equations as a tool for modeling gene regulatory networks. The method, first of all, generates data on reaction flows in a pathway. A set of constraints is formulated incorporating weighting coefficients. Finally the gene regulatory pathways are obtained through optimization of an objective function with respect to these weighting coefficients. The effectiveness of the present method is successfully tested on ten gene regulatory networks existing in the literature. A comparative study with the existing extreme pathway analysis also forms a part of this investigation. The results compare favorably with earlier experimental results. The validated pathways point to a combination of previously documented and novel findings.ConclusionsWe show that our method can correctly identify the causal genes and effectively output experimentally verified pathways. The present method has been successful in deriving the optimal regulatory pathways for all the regulatory networks considered. The biological significance and applicability of the optimal pathways has also been discussed. Finally the usefulness of the present method on genetic engineering is depicted with an example.
In the present article, we introduce a new method for identification of metabolic pathways in constraint based models that consider enzyme and substrate concentrations. It generates data on reaction fluxes based on biomass conservation constraint and then a set of constraints is formulated incorporating weighting coefficients corresponding to concentration of enzymes catalyzing reactions in the pathway. Finally, the rate of yield of the target metabolite, starting with a given substrate, is maximized in order to identify an optimal pathway through these weighting coefficients. In an attempt to solve this problem, we have developed a learning technique that optimizes a given objective function to find the optimal pathways. Finally, we propose a modification of the Newton Raphson method and incorporate it to our proposed methodology, which yields more relevant results from the perspective of biology.
With the increasing availability of experimental data on gene interactions, modeling of gene regulatory pathways has gained special attention. Gradient descent algorithms have been widely used for regression and classification applications. Unfortunately, results obtained after training a model by gradient descent are often highly variable. In this paper, we present a new second order learning rule based on the Newton's method for inferring optimal gene regulatory pathways. Unlike the gradient descent method, the proposed optimization rule is independent of the learning parameter. The flow vectors are estimated based on biomass conservation. A set of constraints is formulated incorporating weighting coefficients. The method calculates the maximal expression of the target gene starting from a given initial gene through these weighting coefficients. Our algorithm has been benchmarked and validated on certain types of functions and on some gene regulatory networks, gathered from literature. The proposed method has been found to perform better than the gradient descent learning. Extensive performance comparison with the extreme pathway analysis method has underlined the effectiveness of our proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.