2013
DOI: 10.48550/arxiv.1303.6167
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Second-Order Rate Region of Constant-Composition Codes for the Multiple-Access Channel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0

Year Published

2013
2013
2014
2014

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 0 publications
0
5
0
Order By: Relevance
“…Other authors [84,111,112,136] also considered inner bounds to the (n, ε)-rate regions (also called global achievability regions) for the discrete memoryless and Gaussian MACs, but it appears that conclusive results are much harder to derive without any further assumptions on the channel model. These are multi-terminal channel coding analogues of the corresponding discussion for Slepian-Wolf coding in Section 6.4.3.…”
Section: Summary and Other Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…Other authors [84,111,112,136] also considered inner bounds to the (n, ε)-rate regions (also called global achievability regions) for the discrete memoryless and Gaussian MACs, but it appears that conclusive results are much harder to derive without any further assumptions on the channel model. These are multi-terminal channel coding analogues of the corresponding discussion for Slepian-Wolf coding in Section 6.4.3.…”
Section: Summary and Other Resultsmentioning
confidence: 99%
“…that for lossless source coding in (3.14)), they do not provide the complete picture with regard to the convergence of rate pairs to a fundamental limit, e.g., a corner point of the Slepian-Wolf region. Indeed, an achievability statement similar to (6.53) holds for the DM-MAC for each input distribution [84,111,136,156] and hence the union over all input distributions. However, one of the major deficiencies of such a statement is that the O(log n) third-order term is not uniform in the input distributions; this poses serious challenges in the interpretation of the result if we consider random coding using a sequence of input distributions that varies with the blocklength (cf.…”
Section: Global Approachesmentioning
confidence: 95%
See 2 more Smart Citations
“…On the other hand, in Theorem 2, essentially all the average error probability is assigned to the joint outage event and a multi-dimensional CLT is applied. This latter approach, which leads to a relatively larger region, is similar to that in [31]- [33] for the discrete MAC. Finally, we would like to point out that the statements of Theorems 2 and 3 correct a slight error in the corresponding result in our conference version of this work [15], in which the term V 3 (P 1 , P 2 ) defined in (104) was missing in (99) and (105).…”
Section: A System Model and Main Resultsmentioning
confidence: 72%