The glucosinolate-myrosinase system found in plants of the order Brassicales is one of the best studied plant defense systems. Hydrolysis of the physiologically inert glucosinolates by hydrolytic enzymes called myrosinases, which only occurs upon tissue disruption, leads to the formation of biologically active compounds. The chemical nature of the hydrolysis products depends on the presence or absence of supplementary proteins, such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles and simple nitriles at the expense of the corresponding isothiocyanates which are formed through spontaneous rearrangement of the aglucone core structure. While isothiocyanates are toxic to a wide range of organisms, including insects, the ecological significance of nitrile formation and thus the role of ESP in plant-insect interactions is unclear. Here, we identified ESP-expressing cells in various organs and several developmental stages of different Arabidopsis thaliana ecotypes by immunolocalization. In the ecotype Landsberg erecta, ESP was found to be consistently present in the epidermal cells of all aerial parts except the anthers and in S-cells of the stem below the inflorescence. Analyses of ESP expression by quantitative real-time PCR, Western blotting, and ESP activity assays suggest that plants control the outcome of glucosinolate hydrolysis by regulation of ESP at both the transcriptional and the post-transcriptional levels. The localization of ESP in the epidermal cell layers of leaves, stems and reproductive organs supports the hypothesis that this protein has a specific function in defense against herbivores and pathogens.