Methanolic and ethanolic crude extracts of Vitis vinifera canes exhibited significant antifungal activity against the three major fungal pathogens affecting grapevines, Plasmopara viticola, Erysiphe necator and Botrytis cinerea. The active extracts were analyzed by LC-PDA-ESI-MS, and selected compounds were identified. Efficient targeted isolation using medium-pressure liquid chromatography afforded six pure constituents in one step. The structures of the isolated compounds were elucidated by NMR and HRMS. Six identified compounds (ampelopsin A, hopeaphenol, trans-resveratrol, ampelopsin H, ε-viniferin, and E-vitisin B) presented antifungal activities against P. viticola. ε-Viniferin also exhibited a low antifungal activity against B. cinerea. None of the identified compounds inhibited the germination of E. necator. The potential to develop a novel natural fungicide against the three major fungal pathogens affecting V. vinifera from viticulture waste material is discussed.
Mandipropamid is a new mandelic acid amide fungicide expressing high activity against foliar infecting oomycetes, including the grapevine downy mildew, Plasmopara viticola . Because cross-resistance with the valinamide fungicides iprovalicarb and benthiavalicarb and the cinnamic acid amide fungicides dimethomorph and flumorph was postulated, all five compounds are classified as carboxylic acid amide (CAA) fungicides. To support this classification, cross-resistance among these compounds with field isolates and the segregation of resistance in F 1 and F 2 progeny of P. viticola were evaluated. A bimodal distribution of sensitivity in field isolates and cross-resistance among all CAAs for the vast majority of isolates were detected. Crosses between sensitive (s) and CAA-resistant (r) isolates of opposite mating types, P1 and P2, yielded abundant oospores. All F 1 -progeny isolates were sensitive to CAAs (s:r segregation 1:0), whereas in F 2 progeny segregation of about 9:1 (s:r) was observed suggesting that resistance to CAA fungicides is controlled by two recessive nuclear genes. Mating type segregated in a ratio P1:P2 of c . 2:1 in F 1 and 1:1 in F 2 progeny. In the same crosses, resistance to the phenylamide fungicide mefenoxam segregated in a ratio of c . 1:3:2 (sensitive:intermediate:resistant), reflecting the monogenic, semidominant nature of resistance. The risk of resistance in P. viticola was classified as high for phenylamide and moderate for CAA fungicides. This is the first report on the inheritance of phenotypic traits in P. viticola .
Plant secondary metabolism significantly contributes to defensive measures against adverse abiotic and biotic cues. To investigate stress-induced, transcriptional alterations of underlying effector gene families, which encode enzymes acting consecutively in secondary metabolism and defense reactions, a DNA array (MetArray) harboring gene-specific probes was established. It comprised complete sets of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes along with 62 cytochrome P450 monooxygenases and 26 ABC transporters. Their transcriptome was monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component analysis based on the transcription of these effector gene families defined distinct responses and crosstalk. Methyl jasmonate and ethylene treatments were separated from a group combining reactions towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae pv. tomato. The responses to the herbicide bromoxynil and UV-B radiation were distinct from both groups. In addition, these analyses pinpointed individual effector genes indicating their role in these stress responses. A small group of genes was diagnostic in differentiating the response to two herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress hormones. Small groups of comprehensively induced effector genes indicate common defense strategies. Furthermore, homologous members within branches of these effector gene families displayed differential expression patterns either in both organs or during stress responses arguing for their non-redundant functions.
The expression of two members of the glutathione S-transferase (GST) multigene family was studied in Arabidopsis plants inoculated with an avirulent strain of Pseudomonas syringae pv. tomato (Pst). Accumulation of AtGSTF2 and AtGSTF6 transcripts started 4 and 2 h after inoculation, respectively, and clearly preceded the induction of the pathogenesis-related PR-1 gene. The aim of this work was to find the reason for the faster induction of the two GSTs compared with classical salicylic acid (SA)-regulated PR-proteins. Expression studies in Pst-inoculated SA-signaling mutants NahG and npr1 revealed that induction of both GSTs was SA-dependent and partially NPR1-independent. The induction of AtGSTF2 by Pst was also strongly repressed in the ethylene insensitive etr1 mutant. Both GSTs were induced by low amounts of SA (0.1 mM) and ethylene (0.1 ppm) while PR-1 gene expression was unaffected by ethylene. Interestingly, ethylene was about 50-fold less effective in NahG compared with wild-type plants thus suggesting a potentiation effect of SA on ethylene-induced accumulation of AtGST transcripts. Increased AtGST expression in plants inoculated with Pst correlated with increased production of SA and ethylene. However, the initial phase of AtGSTF6 induction was independent of SA- and ethylene-signaling. The jasmonate (JA)-insensitive mutant jar1 showed normal induction kinetics for both GSTs. Our data support the hypothesis that full expression of the pathogen-induced AtGSTF2 and, to a lesser extent AtGSTF6, is the result of combined SA- and ethylene-signaling and that early AtGSTF6 expression depends on additional unknown signaling mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.