Plant secondary metabolism significantly contributes to defensive measures against adverse abiotic and biotic cues. To investigate stress-induced, transcriptional alterations of underlying effector gene families, which encode enzymes acting consecutively in secondary metabolism and defense reactions, a DNA array (MetArray) harboring gene-specific probes was established. It comprised complete sets of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes along with 62 cytochrome P450 monooxygenases and 26 ABC transporters. Their transcriptome was monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component analysis based on the transcription of these effector gene families defined distinct responses and crosstalk. Methyl jasmonate and ethylene treatments were separated from a group combining reactions towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae pv. tomato. The responses to the herbicide bromoxynil and UV-B radiation were distinct from both groups. In addition, these analyses pinpointed individual effector genes indicating their role in these stress responses. A small group of genes was diagnostic in differentiating the response to two herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress hormones. Small groups of comprehensively induced effector genes indicate common defense strategies. Furthermore, homologous members within branches of these effector gene families displayed differential expression patterns either in both organs or during stress responses arguing for their non-redundant functions.
Hypoxia is the stimulus for activation of red cell carbonic anhydrase II (CAII) and 2,3-diphosphoglycerate (2,3-DPG) synthesis of chick red blood cells during late embryonic development. We have tested whether plasma catecholamines are involved as hormonal mediators, because hypoxia is a well-known stimulus for catecholamine release in mammalian fetuses. Plasma catecholamines were measured in 8- to 16-day-old chick embryos. Plasma levels of norepinephrine (NE) were initially low, but its concentration increased rapidly from 2.7 nM (day 12) to 13.4 nM at day 13 and 25.5 nM at day 16. Epinephrine (E) was not detectable before day 13. Short-term hypoxic exposure of day 11 embryos (1-h incubation at 13.5% O2) increased plasma NE concentration fivefold compared with the controls but had no effect on E. During 15-h in vitro incubation of red blood cells from day 11, addition of 1 microM NE to the incubation medium increased the red cell 2,3-DPG concentration nearly threefold and CAII activity sixfold compared with the control. The CAII activity and 2,3-DPG concentration were also increased when cells were incubated with plasma from late chick embryos. The activation was induced by beta-adrenergic stimulation of adenylyl cyclase. Atenolol and propranolol blocked the effects of NE and embryonic chick plasma. Analysis of de novo protein synthesis ([35S]methionine incorporation) demonstrated that catecholamines stimulate the synthesis of several proteins besides CAII. The results indicate that developmental changes of plasma NE concentration are instrumental in the adenosine 3',5'-cyclic monophosphate-dependent activation of CAII and 2,3-DPG synthesis of red blood cells from late chick embryos.
A previously symptomless 86-year-old man received single mRNA vaccine BNT162b2. Four weeks later, he succumbed to death due to acute renal and respiratory failure. Although he did not present with any symptoms specific for Coronavirus disease 19 (COVID19), he obtained positive testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), before he died. S1 antigen-binding notably showed significant levels for IgG, while nucleocapsid IgG/IgM was not elicited . By means of autopsy, acute bronchopneumonia and acute tubular failure were assigned as cause death of death. However, we did not observe any characteristic morphological features of COVID19. Postmortem molecular mapping by real time-polymerase chain reaction (RT-PCR) additionally revealed relevant SARS-CoV-2 Ct values in all organs examined (oropharynx, olfactory mucosa, trachea, lungs, heart, kidney, and cerebrum) except for liver and olfactory bulb. These results might contribute to the view that first vaccination induces immunogenicity, but not sterile immunity.
In late chick embryos, coordinate activation of red cell carbonic anhydrase II (CAII) and 2,3-diphosphoglycerate (2,3-DPG) synthesis is initiated by hypoxia. The effects are mediated by unidentified hormonal effectors resident in chick plasma. In the present investigation, we have analyzed the effect of adenosine receptor stimulation on embryonic red cell CAII and 2,3-DPG synthesis. We find that primitive and definitive embryonic red blood cells from chick have an A2a adenosine receptor. Stimulation of the receptor with metabolically stable adenosine analogues causes a large increase of red cell adenosine 3',5'-cyclic monophosphate (cAMP) and subsequent activation of red cell CAII and 2,3-DPG production in definitive red blood cells and of CAII synthesis in primitive red blood cells. Direct stimulation of adenylyl cyclase with forskolin has the same effect. Analysis of red cell protein pattern after labeling with [35S]methionine shows that stimulation of red cell cAMP levels activates synthesis of several other proteins aside from CAII. Presence of actinomycin D inhibits cAMP-dependent changes of protein synthesis, indicating that cAMP-dependent transcriptional activation is required. In contrast to the stable adenosine receptor analogues, adenosine itself was a very weak agonist, unless its metabolism was significantly inhibited. Thus, besides adenosine, other effectors of the adenylyl cyclase system are likely to be involved in the O2 pressure-dependent regulation of red cell metabolism in late development of avian embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.