We have fused the structural gene (hsa) for human serum albumin (HSA) to the expression elements and signal sequence coding region of each of two genes from Bacillus amyloliquefaciens P, an alpha-amylase gene (amyBamP) and a neutral protease gene (nprBamP). Bacillus subtilis strains harboring either of these gene fusions synthesized a protein with the antigenic characteristics and size (68 kilodaltons) of HSA. Results from pulse-labeling studies indicated that the bacterially produced HSA was secreted from cells which had been converted to protoplasts. Results from similar studies with intact cells suggested that the signal sequence was removed from the hybrid protein, providing further evidence that B. subtilis can translocate this foreign protein across the cell membrane. Signal sequence removal was efficient when the level of HSA synthesis was low. However, in strains which synthesized HSA at a high level, signal sequence removal was less efficient.