The 7S particle of Xenopus laevis oocytes contains 5S RNA and a 40‐K protein which is required for 5S RNA transcription in vitro. Proteolytic digestion of the protein in the particle yields periodic intermediates spaced at 3‐K intervals and a limit digest containing 3‐K fragments. The native particle is shown to contain 7‐11 zinc atoms. These data suggest that the protein contains repetitive zinc‐binding domains. Analysis of the amino acid sequence reveals nine tandem similar units, each consisting of approximately 30 residues and containing two invariant pairs of cysteines and histidines, the most common ligands for zinc. The linear arrangement of these repeated, independently folding domains, each centred on a zinc ion, comprises the major part of the protein. Such a structure explains how this small protein can bind to the long internal control region of the 5S RNA gene, and stay bound during the passage of an RNA polymerase molecule.
A cattle genetic linkage map was constructed which covers more than 95 percent of the bovine genome at medium density. Seven hundred and forty six DNA polymorphisms were genotyped in cattle families which comprise 347 individuals in full sibling pedigrees. Seven hundred and three of the loci are linked to at least one other locus. All linkage groups are assigned to chromosomes, and all are orientated with regards to the centromere. There is little overall difference in the lengths of the bull and cow linkage maps although there are individual differences between maps of chromosomes. One hundred and sixty polymorphisms are in or near genes, and the resultant genome-wide comparative analyses indicate that while there is greater conservation of synteny between cattle and humans compared with mice, the conservation of gene order between cattle and humans is much less than would be expected from the conservation of synteny. This map provides a basis for high-resolution mapping of the bovine genome with physical resources such as Yeast and Bacterial Artificial Chromosomes as well as providing the underpinning for the interpolation of information from the Human Genome Project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.