There has been a significant increase in the implementation of wireless sensor networks (WSNs) in different disciplines, including the monitoring of maritime environments, healthcare systems and industrial sectors. WSNs must regulate different sorts of data transmission such as routing protocols and secure key management protocols. An efficient WSNs' architecture must address the capability for remote sensor data management, for example encrypted transmitting data between nodes. This system demonstrates the capability to adapt its sensor members in the network in response to environmental changes or the condition of sensor nodes. The key management technique for any secure application must minimally provide security services such as authenticity, confidentiality, integrity, scalability (S), and flexibility. This chapter studies and analyzes different key management schemes that are implemented in WSN applications and evaluates the performance of secure key coordination algorithm for line topology WSNs. This scheme provides traveling packet for a source to end user via an individually encrypted link between authenticated sensor nodes. It will be shown how security algorithms are applied on a network, such as advanced encryption standard (AES)-based WSNs in real time, e.g., Waspmote sensor platform at the University of Limerick Campus.