This brief investigates the Mittag–Leffler formation bounded control problem for second-order fractional multi-agent systems (FMASs), where the dynamical nodes of followers are modeled to satisfy quadratic (QUAD) condition. Firstly, under the undirected communication topology, for the considered second-order nonlinear FMASs, a distributed event-triggered control scheme (ETCS) is designed to realize the global Mittag–Leffler bounded formation control goal. Secondly, by introducing adaptive weights into triggering condition and control protocol, an adaptive event-triggered formation protocol is presented to achieve the global Mittag–Leffler bounded formation. Thirdly, a five-step algorithm is provided to describe protocol execution steps. Finally, two simulation examples are given to verify the effectiveness of the proposed schemes.