Virtualization technology has promoted the fast development and deployment of cloud computing, and is now becoming an enabler of Internet of Everything. Virtual machine monitor (VMM), playing a critical role in a virtualized system, is software and hence it suffers from software aging after a long continuous running as well as software crashes due to elusive faults. Software rejuvenation techniques can be adopted to reduce the impact of software aging. Although there existed analytical model-based approaches for evaluating software rejuvenation techniques, none analyzed both application service (AS) availability and job completion time in a virtualized system with live virtual machine (VM) migration. This paper aims to quantitatively analyze software rejuvenation techniques from service provider and user views in a virtualized system deploying VMM reboot and live VM migration techniques for rejuvenation, under the condition that all the aging time, failure time, VMM fixing time and live VM migration time follow general distributions. We construct an analytical model by using a semi-Markov process (SMP) and derive formulas for calculating AS availability and job completion time. By analytical experiments, we can obtain the optimal migration trigger intervals for achieving the approximate maximum AS availability and the approximate minimum job completion time, and then service providers can make decisions for maximizing the benefits of service providers and users by adjusting parameter values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.