With the advent of the Internet of Everything era, the Industrial Internet is increasingly showing mutual integration and development. Its core framework, the industrial CPS (Cyber-Physical Systems), has received more and more attention and in-depth research in recent years. These complex industrial CPS systems are usually composed of multiple interdependent sub-networks (such as physical networks and control networks, etc.). Minor faults or failure behaviors between sub-networks may cause serious cascading failure effects of the entire system. In this paper, we will propose a security scheme based on intranal-adding links in the face of the integrated and converged industrial CPS system environment. Firstly, by calculating the size of the largest connected component in the entire system, we can compare and analyze industrial CPS systems’ security performance under random attacks. Secondly, we compare and analyze the risk of cascading failure between integrated industrial CPS systems under different intranal-adding link strategies. Finally, the simulation results verify the system security strategy’s effectiveness under different strategies and show a relatively better exchange strategy to enhance the system’s security. In addition, this paper’s research work can help us design how to further optimize the interdependent industrial CPS system’s topology to cope with the integrated and converged industrial CPS system environment.