To cite this version:Fabien Arène, Laurence Affre, Aggeliki Doxa, Arne Saatkamp. Temperature but not moisture response of germination shows phylogenetic constraints while both interact with seed mass and lifespan. Seed Science Research, Cambridge University Press (CUP), 2017, 27 (02), pp.110 -120.
AbstractUnderstanding how plant traits interact with climate to determine plant niches is decisive for predicting climate change impacts. While lifespan and seed size modify the importance of germination timing, germination traits such as base temperature and base water potential directly translate climatic conditions into germination timing, impacting performance in later life stages. Yet we do not know how base temperature, base water potential, seed mass, lifespan and climate are related. We tested the relationships between base temperature and base water potential for germination, seed size and lifespan while controlling for bioclimatic regions. We also quantified the phylogenetic signal in germination traits and seed size using Pagel's λ. We used a worldwide data set of germination responses to temperature and moisture, seed size and lifespan of 240 seed plants from 49 families. Both germination temperature and moisture are negatively related to seed size. Annual plants show a negative relation between seed size and base water potential, whereas perennials display a negative relation between base temperature and seed mass. Pagel's λ highlighted the slow evolution of base temperature for germination, comparable to seed mass while base water potential was revealed to be labile. In the future, base water potential and seed mass can be used when moisture niches of plants are to be predicted. Lifespan, seed size and base temperature should be taken into account when analysing thermal limits of species distributions.