A binary tanglegram is a pair S, T of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics or software engineering, it is required that the individual trees are drawn crossing-free. A natural optimization problem, denoted tanglegram layout problem, is thus to minimize the number of crossings between inter-tree edges. The tanglegram layout problem is NP-hard and is currently considered both in application domains and theory. In this paper we present an experimental comparison of a recursive algorithm of Buchin et al. [2], our variant of their algorithm, the algorithm hierarchy sort of Holten and van Wijk [8], and an integer quadratic program that yields optimal solutions.