Abstract-Metro maps are schematic diagrams of public transport networks that serve as visual aids for route planning and navigation tasks. It is a challenging problem in network visualization to automatically draw appealing metro maps. There are two aspects to this problem that depend on each other: the layout problem of finding station and link coordinates and the labeling problem of placing non-overlapping station labels. In this paper we present a new integral approach that solves the combined layout and labeling problem (each of which, independently, is known to be NP-hard) using mixed-integer programming (MIP). We identify seven design rules used in most real-world metro maps. We split these rules into hard and soft constraints and translate them into a MIP model. Our MIP formulation finds a metro map that satisfies all hard constraints (if such a drawing exists) and minimizes a weighted sum of costs that correspond to the soft constraints. We have implemented the MIP model and present a case study and the results of an expert assessment to evaluate the performance of our approach in comparison to both manually designed official maps and results of previous layout methods.
Abstract. We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.
We present new algorithms for labeling a set P of n points in the plane with labels that are aligned to one side of the bounding box of P . The points are connected to their labels by curves (leaders) that consist of two segments: a horizontal segment, and a second segment at a fixed angle with the first. Our algorithms find a collection of crossing-free leaders that minimizes the total number of bends, the total length, or any other 'badness' function of the leaders. A generalization to labels on two opposite sides of the bounding box of P is considered and an experimental evaluation of the performance is included.
In this paper we investigate the problem of drawing metro maps which is defined as follows. Given a planar graph G of maximum degree 8 with its embedding and vertex locations (e.g. the physical location of the tracks and stations of a metro system) and a set L of paths or cycles in G (e.g. metro lines), draw G and L nicely. We first specify the niceness of a drawing by listing a number of hard and soft constraints. Then we present a mixed-integer program (MIP) which always finds a drawing that fulfills all hard constraints (if such a drawing exists) and optimizes a weighted sum of costs corresponding to the soft constraints. We also describe some heuristics that speed up the MIP. We have implemented both the MIP and the heuristics. We compare their output to that of previous algorithms for drawing metro maps and to official metro maps drawn by graphic designers. Work supported by grant WO 758/4-2 of the German Science Foundation (DFG).
Abstract. In this paper we consider a new problem that occurs when drawing wiring diagrams or public transportation networks. Given an embedded graph G = (V, E) (e.g., the streets served by a bus network) and a set L of paths in G (e.g., the bus lines), we want to draw the paths along the edges of G such that they cross each other as few times as possible. For esthetic reasons we insist that the relative order of the paths that traverse a node does not change within the area occupied by that node.Our main contribution is an algorithm that minimizes the number of crossings on a single edge {u, v} ∈ E if we are given the order of the incoming and outgoing paths. The difficulty is deciding the order of the paths that terminate in u or v with respect to the fixed order of the paths that do not end there. Our algorithm uses dynamic programming and takes O(n 2 ) time, where n is the number of terminating paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.