Data representing moving objects is rapidly getting more available, especially in the area of wildlife GPS tracking. It is a central belief that information is hidden in large data sets in the form of interesting patterns. One of the most common spatio-temporal patterns sought after is flocks. A flock is a large enough subset of objects moving along paths close to each other for a certain pre-defined time. We give a new definition that we argue is more realistic than the previous ones, and by the use of techniques from computational geometry we present fast algorithms to detect and report flocks. The algorithms are analysed both theoretically and experimentally.
Abstract. Data representing moving objects is rapidly getting more available, especially in the area of wildlife GPS tracking. It is a central belief that information is hidden in large data sets in the form of interesting patterns. One of the most common spatio-temporal patterns sought after is flocks. A flock is a large enough subset of objects moving along paths close to each other for a certain pre-defined time. We give a new definition that we argue is more realistic than the previous ones, and by the use of techniques from computational geometry we present fast algorithms to detect and report flocks. The algorithms are analysed both theoretically and experimentally.
We present new algorithms for labeling a set P of n points in the plane with labels that are aligned to one side of the bounding box of P . The points are connected to their labels by curves (leaders) that consist of two segments: a horizontal segment, and a second segment at a fixed angle with the first. Our algorithms find a collection of crossing-free leaders that minimizes the total number of bends, the total length, or any other 'badness' function of the leaders. A generalization to labels on two opposite sides of the bounding box of P is considered and an experimental evaluation of the performance is included.
We are developing a social network tool that is powerful, comprehensive, and yet easy to use. The unique feature of our tool is the integration of network analysis and visualization. In a long-term interdisciplinary research collaboration, members of our group had implemented several prototypes to explore and demonstrate the feasibility of novel methods. These prototypes have been revised and combined into a stand-alone tool which will be extended regularly.
Abstract. In this paper we consider a new problem that occurs when drawing wiring diagrams or public transportation networks. Given an embedded graph G = (V, E) (e.g., the streets served by a bus network) and a set L of paths in G (e.g., the bus lines), we want to draw the paths along the edges of G such that they cross each other as few times as possible. For esthetic reasons we insist that the relative order of the paths that traverse a node does not change within the area occupied by that node.Our main contribution is an algorithm that minimizes the number of crossings on a single edge {u, v} ∈ E if we are given the order of the incoming and outgoing paths. The difficulty is deciding the order of the paths that terminate in u or v with respect to the fixed order of the paths that do not end there. Our algorithm uses dynamic programming and takes O(n 2 ) time, where n is the number of terminating paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.