The betweenness centrality index is essential in the analysis of social networks, but costly to compute. Currently, the fastest known algorithms require Θ(n 3) time and Θ(n 2) space, where n is the number of actors in the network. Motivated by the fast-growing need to compute centrality indices on large, yet very sparse, networks, new algorithms for betweenness are introduced in this paper. They require O(n + m) space and run in O(nm) and O(nm + n 2 log n) time on unweighted and weighted networks, respectively, where m is the number of links. Experimental evidence is provided that this substantially increases the range of networks for which centrality analysis is feasible.
Abstract-Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomerative approach.
Betweenness centrality based on shortest paths is a standard measure of control utilized in numerous studies and implemented in all relevant software tools for network analysis. In this paper, a number of variants are reviewed, placed into context, and shown to be computable with simple variants of the algorithm commonly used for the standard case.
We consider variations of two well-known centrality measures, betweenness and closeness, with a different model of information spread. Rather than along shortest paths only, it is assumed that information spreads efficiently like an electrical current. We prove that the current-flow variant of closeness centrality is identical with another known measure, information centrality, and give improved algorithms for computing both measures exactly. Since running times and space requirements are prohibitive for large networks, we also present a randomized approximation scheme for current-flow betweenness.
Centrality indices are an essential concept in network analysis. For those based on shortest-path distances the computation is at least quadratic in the number of nodes, since it usually involves solving the single-source shortest-paths (SSSP) problem from every node. Therefore, exact computation is infeasible for many large networks of interest today. Centrality scores can be estimated, however, from a limited number of SSSP computations. We present results from an experimental study of the quality of such estimates under various selection strategies for the source vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.