Abstract-Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomerative approach.
A promising approach to graph clustering is based on the intuitive notion of intra-cluster density vs. inter-cluster sparsity. While both formalizations and algorithms focusing on particular aspects of this rather vague concept have been proposed no conclusive argument on their appropriateness has been given. As a first step towards understanding the consequences of particular conceptions, we conducted an experimental evaluation of graph clustering approaches. By combining proven techniques from graph partitioning and geometric clustering, we also introduce a new approach that compares favorably.
Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomaration approach.
We are developing a social network tool that is powerful, comprehensive, and yet easy to use. The unique feature of our tool is the integration of network analysis and visualization. In a long-term interdisciplinary research collaboration, members of our group had implemented several prototypes to explore and demonstrate the feasibility of novel methods. These prototypes have been revised and combined into a stand-alone tool which will be extended regularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.