Tropical forests have always fascinated scientists due to their unique biodiversity. However, our understanding of ecological processes shaping the complexity of tropical rainforests is still relatively poor. Plant regeneration is one of the processes that remain understudied in the tropics although this is a key process defining the structure, diversity and assembly of tropical plant communities. In my dissertation, I combine experimental, observational and trait-based approaches to identify processes shaping the assembly of seedling communities and compare associations between environmental conditions and plant traits across plant life stages. By working along a steep environmental gradient in the tropical mountains of Southern Ecuador, I was able to investigate how processes of plant regeneration vary in response to biotic and abiotic factors in tropical montane forests. My dissertation comprises three complementary chapters, each addressing an individual research question. First, I studied how trait composition in plant communities varies in relation to the broad- and local-scale environmental conditions and across the plant life cycle. I measured key traits reflecting different ecological strategies of plants that correspond to three stages of the plant life cycle (i.e., adult trees, seed rain and recruiting seedlings). I worked on 81 subplots along an elevational gradient covering a large climatic gradient at three different elevations (1000, 2000 and 3000 m a.s.l.). In addition, I measured soil and light conditions at the local spatial scale within each subplot. My findings show that the trait composition of leaves, seeds and seedlings changed similarly across the elevational gradient, but that the different life stages responded differently to the local gradients in soil nutrients and light availability. Consequently, my findings highlight that trait-environment associations in plant communities differ between large and small spatial scales and across plant life stages. Second, I investigated how seed size affects seedling recruitment in natural forests and in pastures in relation to abiotic and biotic factors. I set up a seed sowing experiment in both habitat types and sowed over 8,000 seeds belonging to seven tree species differing in seed size. I found that large-seeded species had higher proportions of recruitment in the forests compared to small-seeded species. However, small-seeded species tended to recruit better in pastures compared to large-seeded species. I showed that high surface temperature was the main driver of differences in seedling recruitment between habitats, because it limited seedling recruitment of large-seeded species. The results from this experiment show that pasture restoration requires seed addition of large-seeded species and active protection of recruiting seedlings in order to mitigate harmful conditions associated with high temperatures in deforested areas. Third, I examined the associations between seedling beta-diversity and different abiotic and biotic factors between and within elevations. I applied beta-diversity partitioning to obtain two components of beta-diversity: species turnover and species richness differences. I associated these components of beta-diversity with biotic pressures by herbivores and fungal pathogens and environmental heterogeneity in light and soil conditions. I found that species turnover in seedling communities was positively associated with the dissimilarity in biotic pressures within elevations and with environmental heterogeneity between elevations. Further, I found that species richness differences increased primarily with increasing environmental heterogeneity within elevations. My findings show that the associations between beta-diversity of seedling communities and abiotic and biotic factors are scale-dependent, most likely due to differences in species sorting in response to biotic pressures and species coexistence in response to environmental heterogeneity. My dissertation reveals that studying processes of community assembly at different plant life stages and spatial scales can yield new insights into patterns and processes of plant regeneration in tropical forests. I investigated how community assembly processes are governed by abiotic and biotic filtering across and within elevations. I also experimentally explored how the process of seedling recruitment depends on seed size-dependent interactions, and verified how these effects are associated with abiotic and biotic filtering. Identifying such processes is crucial to inform predictive models of environmental change on plant regeneration and successful forest restoration. Further exploration of plant functional traits and their associations with local-scale environmental conditions could effectively support local conservation efforts needed to enhance forest cover in the future and halt the accelerating loss of biodiversity.