2012
DOI: 10.1016/j.eswa.2011.12.005
|View full text |Cite
|
Sign up to set email alerts
|

Segmenting customers by transaction data with concept hierarchy

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
11
0
1

Year Published

2012
2012
2023
2023

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 36 publications
(13 citation statements)
references
References 26 publications
1
11
0
1
Order By: Relevance
“…Lu and Wu (2009) proposed a customer segmentation method based on customers' transaction patterns. Hsu et al (2012) used the idea of the hierarchy of the items consumed to segment customers. Dutta et al (2015) categorized the data mining techniques employed in market segmentation into thirteen methods, such as neural network, RFM analysis, hierarchical clustering, and K-means.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Lu and Wu (2009) proposed a customer segmentation method based on customers' transaction patterns. Hsu et al (2012) used the idea of the hierarchy of the items consumed to segment customers. Dutta et al (2015) categorized the data mining techniques employed in market segmentation into thirteen methods, such as neural network, RFM analysis, hierarchical clustering, and K-means.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Motivated by [9], the so called Customer-Oriented Catalog Segmentation problem, which concerns the problem of segmenting customer based on transactions, has been discussed in [2] [6]. The issues related to segmenting customers by transaction data with concept hierarchy have been addressed in [7] [12]. As an important association study, clustering transactions has drawn increasing attention [14] [16].…”
Section: Preliminariesmentioning
confidence: 99%
“…Framework of the proposed scheme 수는 크게 일반변수(general variable)와 트랜잭션 기반 변수(transaction based variable)로 구분할 수 있다 [1,2] . 일반변수를 사용한 시장세분화 연구는 고객의 인구통 계적 특성, 생활습관, 태도, 심리와 같은 기초적인 고객의 속성을 이용하여 고객을 구분하고 이들의 대상으로 마케 팅을 차별화하여 진행할 수 있도록 한다 [3][4][5][6] . 일반변수를 기반으로 하는 시장세분는 직관적이고 쉽게 적용 가능하 다는 장점이 있는 반면에 유사한 일반변수의 특성을 갖는 고객이 유사한 구매 행태를 나타내지 않을 수 있으며, 데 이터를 수집하기 어렵다는 단점이 존재한다 [1,7] .…”
unclassified