Cyclic tests on Reduced Beam Section (RBS) connections made of heavy structural sections provided detailed insight into the structural behaviour, including strength, ductility, and failure modes of such configurations. The experimental results indicated that geometrical and material effects need to be carefully considered when designing welded RBS connections incorporating large steel profiles. To better interpret the experimental results, nonlinear finite element simulations are conducted for the test series, comprising four largescale specimens with distinct sizes. It is shown that the numerical models can reproduce the overall moment-rotation curves, inelastic distribution, as well as failure modes. The findings point out the need, in relatively large sections with thick flanges, for a deeper RBS cut than currently specified in design guidance. This modification would be required to promote a response governed by extensive yielding at the RBS while reducing the excessive strain demands at the beam-column welds.