The high-resolution analysis of single-channel, seismic re ection data from Lake Erçek (Eastern Anatolia) revealed a wide range of shallow gas anomalies consisting of enhanced re ections, seismic chimneys, acoustic blanking/acoustic turbidity, strong re ectors, and pockmarks, including both surface and buried pockmarks. The enhanced re ections are represented by the higher-amplitude re ection patterns resulting from high acoustic impedance variations. They are mostly clustered in the NW-corner of the lake. Seismic chimneys are represented by vertical and thinned columnar disturbances of amplitude blanking and mostly occurred in deep basinal and faulted sections in the West and East of the lake. Some seismic chimneys, occurring together with pockmarks, represent vertical vent activations. Acoustic gas-masking was represented by chaotic and diffuse seismic re ection patterns, including acoustic blanking and acoustic turbidity. As diffuse acoustic turbidity indicates gas-charged sediments, columnar disturbances showing acoustic blanking indicate degassing of the sediments. These features extend from SE to NW, coinciding with the deep basin morphology of the lake. A very local strong re ector was identi ed in the western section of the lake, simulating the lake oor. This re ector is due to extended enhanced re ections, suggesting shallow free gas. Pockmarks observed in the lake are structurally classi ed into the two distinct types; surface (active) pockmarks found in the SE-part of the lake and buried (passive) pockmarks found in the NW. The former enlarge through deeper gas reservoir feedback, as the layering is impermeable, while the latter have resulted from a cessation of the reservoir feedback mechanism and/or permeable layering. In the lake, shallow gas distribution is controlled by faults, that provide the faultingdriven depositional control and earthquakes, that provide the seismicity-driven overpressure control. The shallow gas is then both vertically and horizontally distributed and, nally, distribution is shaped by asymmetric depositional and stratigraphic factors. This study of Lake Erçek presents complementary information about a possible origin of observed shallow gas and is important in identifying the pockmark types to be targeted for oil/gas exploration and valuable geochemical proxies.