Lake Balaton, a large shallow lake in Central Europe (Hungary), has been the site of extensive ultra‐high‐resolution acoustic and multichannel seismic profiling in the period of 1997–2013. These surveys showed the widespread occurrence of shallow gas in the lake sediments and their immediate substrata. We analyzed about 2000 km of two‐dimensional profiles and mapped the different gas occurrences in the uppermost 20 m. The anomalies caused by free gas were identified, classified, and assigned to upper, middle and lower levels based on gas signatures and stratigraphic position. Monitoring of the uppermost gas front has revealed temporal variations between surveys from different years and seasons that manifested in the changes of free gas content in the upper two levels. Free gas in the lower part of the lake sediments and at around the base of the mud indicated greater stability. The different nature of the three free gas levels can be explained by vertical changes in quantity, production rate, and solubility of methane and carbon dioxide gases. We suggest that methane was derived from the microbial decomposition of organic matter in the mud and Pleistocene peat at the base of the mud, whereas CO2 is transported to the lower mud layers by upwelling fluids.
Renewed exploration activities in the Beardmore-Geraldton belt in the Archean Superior Province, northwestern Ontario, produced large stripped outcrops and new drill cores that revealed a wealth of new information on the structural and lithological settings of gold mineralization in this past-producing mining camp. The aims of this project are to establish the key geological parameters that controlled the genesis and distribution of gold mineralization in the area and to define geological and exploration models that incorporate the revised knowledge of the geological and structural setting, relative timing, mineralogical characteristics and geochemical footprints of the gold mineralization to fill in knowledge gaps about the gold distribution and geometry in the belt. The Beardmore-Geraldton belt consists of 0.15 to 10 km-wide panels of Archean metasedimentary rocks alternating with 1 to 5 km-wide panels of metavolcanic rocks. The older, ca. 2725 Ma metavolcanic panels are in fault contact with the younger metasedimentary panels. The deposition of the sedimentary rocks started at <2700 Ma, as indicated by the youngest detrital zircons dated from the Central and Southern Metasedimentary units and was complete by 2694.0 } 1.0 Ma, the crystallization age of the crosscutting quartz-feldspar porphyry. The Beardmore-Geraldton belt underwent four deformation events. During D1 deformation, the metavolcanic-metasedimentary sequences and the quartz-feldspar porphyry were thrust-imbricated and folded by F1 folds. The D1 event occurred between 2694 Ma, the age of the quartz-feldspar porphyry dyke in Geraldton, and 2690 } 1 Ma, the age of the post-D1 Croll Lake stock. During D2 deformation, south-tonorth shortening, regional-scale, west-plunging F2 folds and axial-planar, east-trending, steeply dipping S2 foliation were formed. The S2 foliation has been folded by S-shaped F3 folds that are associated with an east-trending, spaced axial-planar S3 cleavage, indicating a previously unrecognized D3 sinistral shear event in the belt. These three deformation events were overprinted by a D4 dextral transpression event. In the Beardmore-Geraldton belt, gold mineralization is typically hosted by mudstone, sandstone, banded iron formation and quartz-feldspar porphyry. Gold mineralization is commonly associated with locally auriferous quartz-carbonate veins. The mineralized quartz-carbonate}tourmaline vein selvages are characterized by semi-massive sulphide-sericite-carbonate replacement alteration halos where hosted in banded iron formation. A similar alteration halo is present in veins that are hosted in mudstone, sandstone and quartz-feldspar porphyry, although the sulphides are less abundant than when the veins are hosted in banded iron formation. At least two gold-mineralizing events, including possible remobilization, took place during the tectonic evolution of the belt. Gold-rich quartz-carbonate}tourmaline veins and the associated sericite-carbonatesulphide alteration halos are folded by F1 folds, suggesting that the first gold-bearing event is related to the early phases of the D1 deformation. East-northeast- to east-trending, locally auriferous quartz-carbonatetourmaline- sulphide veins cut F2 fold hinges but are folded by S-shaped F3 folds, suggesting a second, early D3 auriferous episode in the district. Northwest-trending sulphide-rich veins, which cut across early D3 tourmaline- rich veins and are folded by gentle Z-shaped F4 folds, may also have carried or remobilized some gold mineralization during D4 dextral transpression. An increase in gold grade is associated with elevated As, Te, Sb, and W concentrations and sericitization index. It is hoped that the new data and interpretation generated as part of this project will contribute to further mineral exploration success by defining new structural targets and establishing geochemical footprint vectors.
The TGI-4 Lode Gold project, which comprises numerous site-specific and thematic research activities, covers the entire spectrum of crustal settings for lode gold deposits, from orogenic banded iron formationhosted and greenstone-hosted quartz carbonate vein-type gold deposits formed deep in the crust (>5 km), to intrusion-related deposits that are formed at shallower crustal levels (~2-5 km), and to deposits formed at or near the seafloor. Herein we synthesize a number of important project contributions that have significant implications for on-going mineral exploration for hidden deposits. Among the key findings is a newly established link between major faults, their early evolution, syntectonic magmatism and synorogenic sedimentary basin evolution, and gold metallogenesis in various greenstone belts. The revised model incorporates a phase of tectonic extension-a distinct feature recognized in gold-rich settings worldwide-that is applicable to mineral exploration targeting across the Canadian Shield. Importantly, the simultaneous multidisciplinary study of a number of large banded iron formation-hosted gold deposits and districts allows for the development of a unifying genetic model for such deposits that integrates critical structural, stratigraphic, hydrothermal, and metamorphic elements. Several key features that are common to all of the studied deposits, but elements specific to dominantly banded iron formation-hosted gold deposits or to deposits that are only partly hosted in banded iron formation, were also established. The Lode Gold project also bridges a major knowledge gap by characterizing a spectrum of "unusual" or "atypical" gold deposits in the Superior Province. The new and revised models incorporate synvolcanic as well as pre-deformation and synorogenic synmagmatic or intrusion-related gold deposits that represent a large part of the newly discovered resources in the Canadian Shield in both "brownfield" and "greenfield" exploration environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.