Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The fluctuating pressure acting on the radial gate in the high-head flood discharge outlet is the main excitation source of flow-induced vibration. Therefore, this paper delves into the distribution characteristics of fluctuating pressure on the panel of the high-head submerged radial gate based on hydraulic model tests. Hydraulic tests were first conducted to obtain the distribution patterns of time-averaged pressure and the root mean square (RMS) of fluctuating pressure on the radial gate panel. Secondly, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and HHT method was employed to identify the causes of the fluctuating pressure on the gate panel. Finally, the ICEEMDAN-SSA (the sparrow search algorithm)–LSTM (long short-term memory) method was utilized to achieve accurate prediction of the fluctuating pressure on the gate panel. The results show that the time-averaged pressure in the middle of the gate panel is higher than that at the top and near the bottom edge, which differs significantly from the static pressure distribution. The RMS of the fluctuating pressure near the bottom edge is higher than that in the middle and at the top. The fluctuating pressure acting on the gate panel in the time domain can be regarded as a stationary process. The fluctuating pressure on the gate panel is caused by the combined diffusion and random mixing of multi-scale vortices in the turbulent eddy structure. The ICEEMDAN-SSA-LSTM combined method significantly improves the prediction accuracy of fluctuating pressure on the gate panel compared to the LSTM and ICEEMDAN-LSTM methods.
The fluctuating pressure acting on the radial gate in the high-head flood discharge outlet is the main excitation source of flow-induced vibration. Therefore, this paper delves into the distribution characteristics of fluctuating pressure on the panel of the high-head submerged radial gate based on hydraulic model tests. Hydraulic tests were first conducted to obtain the distribution patterns of time-averaged pressure and the root mean square (RMS) of fluctuating pressure on the radial gate panel. Secondly, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and HHT method was employed to identify the causes of the fluctuating pressure on the gate panel. Finally, the ICEEMDAN-SSA (the sparrow search algorithm)–LSTM (long short-term memory) method was utilized to achieve accurate prediction of the fluctuating pressure on the gate panel. The results show that the time-averaged pressure in the middle of the gate panel is higher than that at the top and near the bottom edge, which differs significantly from the static pressure distribution. The RMS of the fluctuating pressure near the bottom edge is higher than that in the middle and at the top. The fluctuating pressure acting on the gate panel in the time domain can be regarded as a stationary process. The fluctuating pressure on the gate panel is caused by the combined diffusion and random mixing of multi-scale vortices in the turbulent eddy structure. The ICEEMDAN-SSA-LSTM combined method significantly improves the prediction accuracy of fluctuating pressure on the gate panel compared to the LSTM and ICEEMDAN-LSTM methods.
Radial gate, a spatial frame structure, is the key factor to control water discharge in dam structure and storm surge barriers. However, the fluid-induced vibration (FIV) problem always occurs owing to fluctuation loads exerted on the gate, threatening the safety of hydropower stations. In this work, two fluid–structure interaction (FSI) modal analysis methods—the coupled acoustics–structure method and the added-mass method—are provided. Further, a comprehensive investigation on the vibration characteristics of the spatial radial gate, considering spatial structural characteristics and the FSI effect, is conducted. The numerical results revealed that the feasibility of the proposed coupled acoustics–structure method in analyzing FSI modal analysis was demonstrated; moreover, a reasonable length of the fluid domain in front of the skinplate existed for efficient computation. Meanwhile, through the added-mass method, the rational added-mass discount factor of hydrodynamic loads obtained from the Westergaard formula was provided. The FSI effect induced whole-gate rotation vibration streamwise around trunnion pins, significantly reducing the gate’s fundamental vibration frequency. In addition, three typical dynamic-instability vibration patterns of radial gates were presented. These patterns were affected by spatial structural characteristics and FSI. It was demonstrated that the struts and skinplate coupled bending–torsional vibration would cause the radial gate frame structure to fail catastrophically. The proposed insights can provide guidelines of vibration characteristics analysis of the radial gate submerged in flow water in reservoir and storm surge barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.