Human noroviruses impose a considerable health burden globally. However, study of their inactivation is still challenging with currently reported cell culture models, as discrimination of infectious viral particles is still difficult. Traditionally, the ability of particles to bind putative carbohydrate receptors is conducted as a proxy for infectivity, but these receptors are inconsistent, expensive, and hard to purify/modify. We report a hitherto unexplored property of a different type of ligand, a nucleic acid aptamer, to mimic receptor binding behavior and assess capsid functionality for a selected strain of norovirus. These emerging ligands are cheaper, more stable, and easily synthesized/modified. The previously unutilized characteristic reported here demonstrates the fundamental potential of aptamers to serve as valuable, accessible tools for any microorganism that is difficult to cultivate/study. Therefore, this novel concept suggests a new use for aptamers that is of great value to the microbiological community—specifically that involving fastidious microbes.