The selection of an optimal investment sector is of critical importance not only for individual financial success but also to drive economic development. The allocation of capital into sectors with high potential for growth, innovation, and job creation is key. In addressing the complexity of decisionmaking scenarios associated with investment sector exploration, we introduce a novel data structure known as Picture fuzzy hypersoft set (PF HSSs ). This specialized approach within computational intelligence and decision-making aims to categorize data into various attributes and sub-attributes, considering the significant role of neutrality. The study stems from the need for a comprehensive framework (PFHSSs) that can effectively handle intricate decision-making scenarios involving attributes, subattributes, and nuanced factors such as neutrality. Traditional tools such as TOPSIS and its extensions of fuzzy sets, while robust in Multiple Criteria Decision Making (MCDM), may face challenges in modeling and analyzing decisionmaking information within a PFHSSs environment. The rationale behind this study lies in enhancing the accuracy and efficiency of decision-making processes when dealing with complex, fuzzy, and multicriteria data. By introducing newly proposed distances and similarity measures tailored to PFHSSs, and constructing a PFHSSs-TOPSIS method, we aim to address the limitations faced by existing models in the PF HSSs environment. The application of Hamming distance-based similarity measures further distinguishes our method by determining the weights assigned to each decision maker. The proposed PF HSSs -TOPSIS method is practically applied in designing an optimal investment sector exploration tool for investors. This method has the potential to establish a crucial connection between alternatives and attributes, providing value across various fields and industries. The research emphasizes bridging the gap in decisionmaking scenarios where alternatives and attributes need to be effectively connected and analyzed, thereby contributing to the advancement of decision-making processes in complex domains.