2015
DOI: 10.1002/nag.2487
|View full text |Cite
|
Sign up to set email alerts
|

Selection of sand models and identification of parameters using an enhanced genetic algorithm

Abstract: Summary Numerous constitutive models of granular soils have been developed during the last few decades. As a consequence, how to select an appropriate model with the necessary features based on conventional tests and with an easy way of identifying parameters for geotechnical applications has become a major issue. This paper aims to discuss the selection of sand models and parameters identification by using genetic algorithm. A real‐coded genetic algorithm is enhanced for the optimization with high efficiency.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
82
0
1

Year Published

2017
2017
2018
2018

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 127 publications
(84 citation statements)
references
References 30 publications
(66 reference statements)
1
82
0
1
Order By: Relevance
“…Additionally, the objective error calculated by this function is a dimensionless variable; thus, any difference in error can be avoided for different objectives with different variables. Due to the stability of Equation , many researchers have adopted it as the error function to conduct the optimizations …”
Section: Methodology Of Identificationmentioning
confidence: 99%
See 2 more Smart Citations
“…Additionally, the objective error calculated by this function is a dimensionless variable; thus, any difference in error can be avoided for different objectives with different variables. Due to the stability of Equation , many researchers have adopted it as the error function to conduct the optimizations …”
Section: Methodology Of Identificationmentioning
confidence: 99%
“…The procedures presented above, and others, which are not discussed here, are summarized in Figure . Most identification procedures are based on 2 different codes: an FEM code (eg, PLAXIS, FLAC, and ABAQUS) or a single Gauss point integration of a constitutive model (eg, Jin et al and Ye et al) for the simulation, and the search method code for finding the optimal solution.…”
Section: Methodology Of Identificationmentioning
confidence: 99%
See 1 more Smart Citation
“…Therefore, due to the occurrence of creep, the decrease in the pore volume for Wenzhou clay could be more pronounced, thus promoting the development of differential settlement (δ). According to Yin [55,56], the tertiary creep of a soil contributes significantly to the long-term deformation of foundations of the highly sensitive clays [57][58][59]. Thus, this creep behavior becomes one of the significant factors contributing to this incident.…”
Section: Technological Perspectivementioning
confidence: 99%
“…Dentre as principais técnicas aplicadas em geotecnia destaca-se o algoritmo genético (AG) proposto por Holland (1992), um mecanismo de busca adaptativa que se baseia no princípio Darwiniano de seleção natural e reprodução genética. Jin et al (2016) destacam que devido a sua robustez, eficiência e capacidade de fornecer um conjunto de soluções próximas da solução ideal ao invés de uma única resposta, o que o torna mais prático do ponto de vista geotécnico, faz do AG uma das técnicas mais aplicadas para solução dos problemas em geotecnia (SAMARAJIVA; MACARI; WATHUGALA, 2005;LEVASSEUR et al, 2008;BAROTH;MALECOT, 2010;ROKONUZZAMAN;SAKAI, 2010;HELENO, 2011;PAPON, 2012;JIN et al, 2016;YIN et al, 2017) Dentro desse contexto, utilizar os resultados de medições diretas possíveis de serem feitas no campo para, por meio de análises inversas, estimar parâmetros de modelos constitutivos de comportamento do solo é um caminho que tem se mostrado promissor (LEDESMA; GENS; ALONSO, 1996;ZENTAR;MOULIN, 2001;FINNO, 2004;CALVELLO, 2005;LEVASSEUR et al, 2008;HICHER, 2008;BAROTH;MALECOT, 2010;HELENO, 2011;PAPON, 2012;ZHAO et al, 2015;YIN et al, 2017).…”
Section: -Introduçãounclassified