Pore-forming toxins have evolved to induce membrane injury by formation of pores in the target cell that alter ion homeostasis and lead to cell death. Many pore-forming toxins use cholesterol, sphingolipids, or other raft components as receptors. However, the role of plasma membrane organization for toxin action is not well understood. In this study, we have investigated cellular dynamics during the attack of equinatoxin II, a poreforming toxin from the sea anemone Actinia equina, by combining time lapse three-dimensional live cell imaging, fluorescence recovery after photobleaching, FRET, and fluorescence crosscorrelation spectroscopy. Our results show that membrane binding by equinatoxin II is accompanied by extensive plasma membrane reorganization into microscopic domains that resemble coalesced lipid rafts. Pore formation by the toxin induces Ca 2؉ entry into the cytosol, which is accompanied by hydrolysis of phosphatidylinositol 4,5-bisphosphate, plasma membrane blebbing, actin cytoskeleton reorganization, and inhibition of endocytosis. We propose that plasma membrane reorganization into stabilized raft domains is part of the killing strategy of equinatoxin II.Pore-forming proteins (PFPs) 4 have been developed by many organisms ranging from bacteria and parasites to animals to disrupt membrane integrity of the target cell. The purpose of membrane permeabilization in many cases is to compromise cell survival, as it happens with toxins like ␣-toxin, actinoporins, or the proteins of the Bcl-2 family and perforin in human cells. However, it can also be related with the escape of certain bacteria from the phagosome, like listeriolysin, or with protein delivery into the cytosol, as in the case of colicins (1-3).PFPs are secreted by the producer cell in soluble form and bind to target cells via specific receptors. Then they undergo a conformational change that exposes hydrophobic residues and allows their insertion into the plasma membrane and oligomerization into a pore. The nature, stoichiometry, and size of that pore depend on the PFP (1). In vitro studies suggest that the toxins of the actinoporin family form a tetramer (4 -6), although it could also have a structure similar to those recently reported for cytolysin A or fragaceatoxin C (7, 8), with a higher oligomeric state. The nature of the pore is believed to be toroidal, with lipids exposed to the pore lumen (9). In red blood cells and on artificial lipid vesicles, actinoporins formed pores ϳ2 nm in diameter (10, 11).Many PFPs use molecules associated with lipid rafts as receptors (12). Rafts are lipid/protein domains enriched in cholesterol and sphingolipids that act as signaling platforms in the plasma membrane of the cell. During the last years, there has been extensive debate over what rafts are and their functional role. Different domains of raft nature have been observed in several temporal and spatial scales. As a consequence, there are many different kinds of domains that have been associated with rafts (13).Some examples of raft-associated toxin...