Perceptual learning is considered a manifestation of neural plasticity in the human brain. We investigated brain plasticity mechanisms in a learning task using noninvasive transcranial electrical stimulation (tES). We hypothesized that different types of tES would have varying actions on the nervous system, which would result in different efficacies of neural plasticity modulation. Thus, the principal goal of the present study was to verify the possibility of inducing differential plasticity effects using two tES approaches [i.e., direct current stimulation (tDCS) and random noise stimulation (tRNS)] during the execution of a visual perceptual learning task.One hundred seven healthy volunteers participated in the experiment. High-frequency tRNS (hf-tRNS, 100 -640 Hz), low-frequency tRNS (lf-tRNS, 0.1-100 Hz), anodal-tDCS (a-tDCS), cathodal-tDCS (c-tDCS), and sham stimulation were applied to the visual areas of the brain in a group of volunteers while they performed an orientation discrimination task. Furthermore, a control group was stimulated on the vertex (Cz). The analysis showed a learning effect during task execution that was differentially modulated according to the stimulation conditions. Post hoc comparisons revealed that hf-tRNS significantly improved performance accuracy compared with a-tDCS, c-tDCS, sham, and Cz stimulations.Our results confirmed the efficacy of hf-tRNS over the visual cortex in improving behavioral performance and showed its superiority in comparison to others tES. We concluded that the mechanism of action of tRNS was based on repeated subthreshold stimulations, which may prevent homeostasis of the system and potentiate task-related neural activity. This result highlights the potential of tRNS and advances our knowledge on neuroplasticity induction approaches.