Evaluation of molecular surfaces plays the key role in a wide range of cutting-edge scientific fields and technologies, due to the well-characterized dependency between molecular surfaces and condensed phase thermodynamics. Numerous methods to evaluate molecular surfaces such as van-der-Waals and solvent accessible surface areas and various parameterizations for each one, have been proposed in the literature and typically yield quite diverse estimations of molecular surfaces. Despite this diversity, numerous successful applications have been reported for each one, which has become possible via ad-hoc modifications and parametrizations employed to accommodate inappropriately defined molecular surfaces.
The main aim of the present study is to propose “thermodynamically effective” molecular surface which unlike the conventionally accepted molecular surfaces, can be defined only uniquely, can be measured experimentally for each molecule directly and straightforwardly, is defined based on a well-characterized theoretically described dependency between molecular surfaces and solution thermodynamics, and is highly accurate in evaluating various thermodynamics quantities in solution for a wide temperature range and different types of molecules, without requiring any ad-hoc modification.