Herein, a simple, versatile, and low-cost approach has been proposed to realize the green utilization of secondary aluminum dross, the hazardous solid waste, namely directly sintering dry-pressed green bodies from secondary aluminum dross to fabricate porous ceramics according to high-temperature foaming process spontaneously without adding spare foaming agents. Aluminum nitride (AlN) in secondary aluminum dross was employed to realize high-temperature foaming due to its oxidation, which makes traditional AlN and salts removal process needless. Moreover, near-zero shrinkage or even expansion during sintering of porous ceramics have occurred because in-situ foaming process together with the oxidation of Al particles well offset the sintering shrinkage. After sintering at 1400 • C for 2 h, porous ceramics composed of α-Al 2 O 3 and spinel phases with open porosity of 37.91%, sintering expansion rate of 1.13%, flexural strength of 45.67 MPa, and thermal conductivity of 0.97 W/(m⋅K) have been prepared. Cenospheres as pore-forming agents have been added to further improve the porosity, and alumina-based porous ceramics with open porosity of 28.39%-43.20% and flexural strength of 15.80-52.48 MPa have been obtained. This effective solution for recycling secondary aluminum dross could supply high-performance porous ceramics, which is expected to be applied in the fields of light-weight structural components and thermal insulations.