Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.
A ceramic matrix composite based on zirconium dioxide doped with carbon nanotubes (CNTs) and metallic silver as a plastic binder was produced by hydrothermal synthesis from ceramic precursor and a CNTs suspension followed by critical point drying of the synthesized hydrogel and metallic silver deposition on ceramic composite aerogel fragments from a AgNO 3 solution. Multi-indentation loading of the composite has revealed two types of mechanical response: 1) hardness decreasing with an increasing of number of cycles and 2) significant increasing of hardness with an increasing number of indentations. Local chemical composition analysis has revealed correlations between the composite hardness and the presence oxygen atoms for first type and silver and yttrium atoms for second type of mechanical response respectively.
AlMgB14-TiB2 composite materials were fabricated by self-propagating high-temperature synthesis (SHS) followed by spark plasma sintering of the obtained SHS products. It was found that, during the SHS, the AlMgB14 phase is formed at a donor (Ti + 2B) to acceptor (Al12Mg17-B) mass ratio of 3:7 and 4:6, respectively. The specimen sintered from the SHS powder with the donor:acceptor mass ratio of 5:5 at a temperature of 1470 °C has a uniform skeletal structure. The average hardness of the obtained specimen is 30.1 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.