Probing the structure of materials in situ is of central importance in heterogeneous catalysis. Mostly, this is done in an integral manner, that is without spatial resolution. However, at high conversion in a catalyst bed prominent concentration and/or temperature profiles may exist which can result in significant spatial variation of the catalyst structure. In the present study, X-ray absorption spectroscopy combined with on-line mass spectrometry was used to monitor the structural changes of a Pt-Rh/Al 2 O 3 catalyst in a fixed-bed reactor during partial oxidation of methane. The reaction ignited at 310°C and integral X-ray absorption spectroscopy showed that the Rh-Pt-particles were reduced at the same time. However, monitoring with a beam of 1 mm  0.6 mm size along the axial position of the catalyst bed uncovered that Rh and Pt were still in oxidized state in the entrance region, whereas they were in reduced state in the zone at the end of the catalyst bed. The gradual transition from the reduced to the oxidized state was found to shift towards the bed entrance if the temperature was slightly increased.